Plasma Glutamine and Ammonia Dynamics as Predictors of Hyperammonemic Crisis in Urea Cycle Disorders: A Retrospective Study Stratified by Onset Type Yasuaki Yasuda, Yoko Nakajima, Yuta Sudo, Takuma Ishihara²⁾, Tetsuya Ito¹⁾ - 1) Department of Pediatrics, Fujita Health University Graduate School of Medicine, Aichi, Japan. - 2) Innovative and Clinical Research Promotion Center, Gifu University Hospital, Gifu, Gifu, Japan. ## Background: Urea cycle disorders (UCDs) are inherited metabolic diseases caused by enzymatic deficiencies in the hepatic urea cycle, resulting in the accumulation of neurotoxic ammonia (NH $_3$). Hyperammonemic crisis (HAC) is a lifethreatening complication, especially in neonatal-onset UCD, and is associated with poor neurological outcomes when plasma NH $_3$ levels exceed 600 μ g/dL. Although current guidelines recommend maintaining plasma glutamine (Gln) levels below 1000 μ mol/L, reliable prediction of HAC remains a major clinical challenge. ### Objective: To determine whether dynamic changes in plasma NH₃ and Gln concentrations can predict HAC in UCD patients under chronic management, and to assess whether these predictive patterns differ by onset type (neonatal vs. late-onset) and by timing before HAC. #### Methods: We retrospectively analyzed 18 UCD patients (9 neonatal-onset [NO], 9 late-onset [LO]) followed at a single center from 2014 to 2024. Plasma NH₃ and Gln levels were collected during routine outpatient visits and within 90 days before HAC episodes (defined as NH₃ \geq 150 µg/dL). We calculated the changes in NH₃ and Gln (Δ NH₃, Δ Gln) over two intervals: from 61–90 to 31–60 days, and from 31–60 to 14–30 days before HAC. Associations with subsequent HAC risk were assessed using generalized linear mixed models (GLMMs). ## Results: The interactions of both Δ Gln and Δ NH₃ with onset type were statistically significant (p < 0.01), indicating differential effects on HAC risk between NO and LO groups. In the NO group, both Δ Gln and Δ NH $_3$ from 31–60 to 14–30 day interval before HAC were clearly sassociated with HAC risk. An increase of 400 μ mol/L in Δ Gln was associated with a 45.0% probability of HAC, while an 80 μ g/dL increase in Δ NH $_3$ corresponded to a 22.5% probability. In contrast, changes during the earlier period (61–90 to 31–60 days prior) were not predictive. No significant predictive associations were observed in the LO group during either interval. # **Conclusion:** In neonatal-onset UCD, increasing trends in plasma Gln and NH₃ levels within 31–60 days prior to HAC may serve as early indicators of impending crisis, supporting the clinical utility of longitudinal biomarker monitoring. The absence of such patterns in late-onset UCD suggests distinct pathophysiological mechanisms and highlights the need for alternative risk assessment strategies in this subgroup.